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A two-dimensional numerical model based on smoothed particle hydrodynamics �SPH� was used to simulate
unsaturated �multiphase� flow through fracture junctions. A combination of standard SPH equations with
pairwise fluid-fluid and fluid-solid particle-particle interactions allowed surface tension and three-phase contact
dynamics to be simulated. The model was validated by calculating the surface tension in four different ways:
�i� from small-amplitude oscillations of fluid drops, �ii� from the dependence of the capillary pressure on drop
radius, �iii� from capillary rise simulations, and �iv� from the behavior of a fluid drop confined between parallel
walls under the influence of gravity. All four simulations led to consistent values for the surface tension. The
dependence of receding and advancing contact angles on droplet velocity was studied. Incorporation of surface
tension and fluid-solid interactions allowed unsaturated flow through fracture junctions to be realistically
simulated, and the simulation results compare well with the laboratory experiments of Dragila and Weisbrod.
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I. INTRODUCTION

Multiphase flow in fracture apertures plays an important
role in ground water recharge �1�, oil recovery �2�, and the
behavior of hydrothermal systems �3�. Fractures may also
strongly decrease the time required for contaminants to mi-
grate through the vadose zone to an underlying aquifer �4�.
Computer modeling is playing an ever increasing role in the
development of a better understanding of the behavior of
fluids in the subsurface. However, the application of standard
grid-based numerical methods to multiphase fluid-flow pro-
cesses with complex dynamical interfaces is fraught with dif-
ficulties such as artificial interface broadening and grid en-
tanglement �5�. The complex dynamics of contact angles also
complicates the application of grid-based techniques to mod-
eling flow in domains in which fluid-solid interactions play
an important role. Consequently lattice Boltzmann simula-
tions �6,7� have been more widely applied to multiphase
fluid flow. Some lattice Boltzmann models for multiphase
fluid flow violate Galilean invariance �8�, but this is more of
theoretical interest than practical importance for the low fluid
velocity applications described in this work. A disadvantage
of smoothed particle hydrodynamics �SPH� models is that
their particle nature leads to “artificial” contributions to both
the viscosity and surface tension. In addition, in the SPH
model presented in this paper, the surface tension is gener-
ated primarily by particle-particle interactions, and there is
no analytical relationship between these interactions and the
surface tension. In lattice Boltzmann models, there is a
simple relationship between the kinematic viscosity and the
relaxation parameter �6,7�, and the surface tension can be
calculated directly from the model parameters if the lattice
Boltzmann model is based on a Landau-Ginzburg and Cahn-
Hilliard type of free energy functional �9�. However, if the

popular particle-particle interaction approach is used �10�,
the surface tension of the lattice Boltzmann fluid must be
measured using approaches like those applied to the SPH
model described in this paper. Current applications of lattice
Boltzmann simulations to modeling multiphase flows are
limited to the density ratio between fluid phases of less than
50 due to stability issues �10�. Inability to handle large den-
sity contrasts seriously limits the application of lattice Bolt-
zmann methods to unsaturated flow processes of practical
importance. In particular, density ratios of �1000:1 and vis-
cosities ratios of �100:1 typical of many liquid-air systems
at standard temperature and pressure are out of the reach of
current lattice Boltzmann models.

An alternative approach to modeling multiphase flow in
domains with complex solid boundaries is to use Lagrangian
particle-based methods such as SPH or dissipative particle
dynamics �DPD�. These methods share with lattice Boltz-
mann simulations the advantage of not requiring explicit in-
terface tracking or contact angle models, and in addition,
SPH and DPD fluids are manifestly Galilean invariant and
isotropic because particle-particle interactions depend on
relative particle positions and velocity differences. In
particle-based methods, the fluid-fluid interfaces move with
the particles, there is no need to explicitly track the fluid-
fluid interfaces, and processes such as fluid fragmentation
and coalescence can be handled without difficulty. In addi-
tion, the particle nature of SPH and DPD models allows
fluid-solid interactions to be modeled through simple
particle-particle interactions. Dissipative particle dynamics
differs from SPH because random particle-particle interac-
tions are included to represent the effects of thermally driven
fluctuations �11,12�. The particles in DPD simulations repre-
sent only a small cluster of atoms or molecules while SPH
was initially developed for astrophysical fluid dynamics
where SPH particles represented large fluid volumes. Conse-
quently DPD has been applied primarily to mesoscale �be-
tween the molecular and hydrodynamic scales� processes*Electronic address: Alexandre.Tartakovsky@pnl.gov
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while the application of SPH to small-scale processes, such
as fluid flow in fractures and porous media, is a relatively
recent development. To simulate hydrodynamic behavior us-
ing DPD a very large number of particles may be required
�but not as large as the number of particles required in mo-
lecular dynamics simulations� to “average away” the effects
of the random fluctuations. In SPH simulations, on the other
hand, the number of particles needed is determined by the
required resolution and accuracy of the numerical solutions.

In this paper we describe a numerical model based on
SPH that was developed to simulate multiphase fluid flow
through unsaturated fracture apertures. SPH is an
interpolation-based method that can be used to numerically
solve systems of partial differential equations. The Lagrang-
ian particle nature of SPH allows physical and chemical ef-
fects to be incorporated into the modeling of flow processes
that may also be complicated by irregular and deformable
boundaries. SPH was first introduced by Lucy �13� and by
Gingold and Monaghan �14� for the solution of Navier-
Stokes equations in the context of astrophysical fluid dynam-
ics. Since its introduction, SPH has been successfully used to
model a wide range of fluid flow processes and the behavior
of solids subjected to large deformations. For example, Mon-
aghan �15� used SPH to model the collapse of dams, Morris
et al. �16� extended SPH to model low-Reynolds-number
flows, and Zhu et al. �17� and Zhu and Fox �18� applied SPH
to study pore-scale flow and transport in saturated porous
media.

Incorporation of the effects of surface tension into SPH
simulations has been a vexing problem. Morris �19� modeled
surface tension based on its macroscopic description with
surface tension forces that were proportional to the fluid-
fluid interface curvature. This approach gives an accurate
estimation of the effects of surface tension but involves
rather complex calculations of front curvatures that, in some
cases, may lead to significant errors. Nugent and Posch �20�
used attractive forces, corresponding to the cohesive pressure
in the van der Waals equation of state, to simulate surface
tension in two-dimensional SPH simulations. They found
that it was necessary to increase the range of the attractive
forces to at least twice the range of the SPH weighting func-
tion to obtain stable liquid drops, a costly solution causing a
significant increase in the computer time required to perform
a simulation. In the work described in this paper a combina-
tion of short-range repulsive and �relatively� long-range at-
tractive particle-particle interactions was used �with the
range of the attractive interactions equal to the range of the
SPH weighting function� with standard SPH equations. In-
corporating particle-particle interaction forces into the SPH
model allows us to simulate not only surface tension but also
fluid-solid interactions, resulting in well-defined fluid-solid
contact angles under both static and dynamic conditions. The
use of a combination of short-range repulsive and long-range
attractive interactions was motivated by the molecular ori-
gins of surface tension. The consistency of the proposed
model was verified by estimating the surface tension and
contact angles from four different numerical experiments. In
addition, numerical simulations of fluid flow through an un-
saturated fracture junction were used to illustrate the appli-
cation of this approach to practical problems, and the simu-

lation results compared well with the laboratory experiments
of Dragila and Weisbrod �1�.

II. SPH EQUATIONS

In SPH, the fluid is represented by a discrete set of N
particles. The position of the ith particle is denoted by the
vector ri, i=1, . . . ,N, and each particle has a mass mi and
density �i. The SPH theory is based on the idea that a con-
tinuous field A�r� at position r can be smoothed by a convo-
lution integral:

As�r� =� A�r��W�r − r�,h�dr�, �1�

where As�r� is the smoothed field and the weighting function
W with a range or support scale h satisfies the normalization
condition

� W�r − r�,h�dr� = 1. �2�

The integration in Eq. �1� is performed over the entire space
of the field, and in the h→0 limit in which W becomes a
Dirac delta function, As�r�→A�r�.

Properties associated with any particle i are calculated by
approximating the integral in Eq. �1� by the sum

Ai = �
j

�VjAjW�ri − r j,h� = �
j

mj
Aj

� j
W�ri − r j,h� , �3�

where �Vj is the volume occupied by particle j, � j is the
density at position r j, and the gradients of these properties
are approximated by

�Ai = �
j

�VjAj�iW�ri − r j,h� = �
j

mj
Aj

� j
�iW�ri − r j,h� .

�4�

The magnitude of the field at any position r is approximated
by

A�r� = �
j

mj
Aj

� j
W�r − r j,h� , �5�

and the gradient of A�r�, �A�r�, can be approximated by

�rA�r� = �
j

mj
Aj

� j
�rW�r − r j,h� , �6�

where the summation is performed over all particles. The
density �i can be found from Eq. �3� which becomes

�i = �
j

miW�ri − r j,h� �7�

for Ai=�i.
A variety of forms, including spline functions of different

order, have been used for the weighting functions. We found
that, for an accurate representation of free surfaces, a spline
function of at least fourth order is needed, and we used the
fourth-order weighting function �9�
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3
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h
�5

− 6	2 −
3
r
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�5

+ 15	1 −
3
r

h
�5

, 0 � 
r
 � h/3,

	3 −
3
r

h
�5

− 6	2 −
3
r

h
�5

, h/3 � 
r
 � 2h/3,

	3 −
3
r

h
�5

, 2h/3 � 
r
 � h ,

0, 
r
 � h ,

� �8�

where �=63/478�h2 in two spatial dimensions.
The motion of each particle is governed by momentum

conservation described by the Navier-Stokes equation

dvi�t�
dt

= −
�Pi�t�

�i
+

	i

�i
�2vi�t� + g �9�

and mass conservation represented by

d�i

dt
= � · ��ivi� . �10�

Using the SPH approximations �3� and �4� for functions
and their gradients, an SPH representation of the Navier-
Stokes equations can be obtained.

A number of SPH approximations to the Navier-Stokes
equation have been described in the literature �21�, and the
momentum conservation equation

dvi

dt
= − �

j

mj	Pj

� j
2 +

Pi

�i
2��iW�ri − r j,h�

+ 2
�
j

mj
�vi − v j�

�i� j�ri − r j�2 �ri − r j� · �iW�ri − r j,h� + g ,

�11�

defined for each particle, was used in the work described in
this paper �vi is the velocity of the ith particle�. In Eq. �11�,
the SPH representation of the pressure gradient �the first term
on the right-hand site of Eq. �11�� was derived by Monaghan
�21� and the SPH representation of the viscous force was
obtained by Morris et al. �16�. Equation �10� determines the
evolution of the particle density. For simplicity and exact
mass conservation, the density of each particle is commonly
computed directly from Eq. �7�.

Given the densities �i, the pressures Pi in Eq. �11� are
obtained from the equation of state. In this work a van der
Waals equation of state was used in which the pressure is
given by �20�

P =
�k̄T

1 − �c̄1

− c̄2�2, �12�

where k̄=kb /m �kb is the Boltzmann constant�, c̄1=c1 /m, and
c̄2=c2 /m. Here, c1 and c2 are the van der Waals constants
and m is the mass of the particles.

To simulate the effect of surface tension and fluid solid
interactions particle-particle interactions were added in Eq.
�11�, leading to the particle equation of motion

dvi

dt
= − �

j

mj	Pj

� j
2 +

Pi

�i
2��iW�ri − r j,h�

+ 2
�
j

mj
�vi − v j�

�i� j�ri − r j�2 �ri − r j� · �iW�ri − r j,h� + g

+
1

mi
Fi, �13�

where Fi, is the force acting on particle i due to the particle-
particle interactions with interaction forces given by

Fij = �sij cos	1.5�

3h

r j − ri
� r j − ri


r j − ri

, 
r j − ri
 � h ,

0, 
r j − ri
 � h ,

�

�14�

where sij is the strength of the force acting between particles
i and j. The total force due to interparticle interactions acting
on any particle i can then be found from

Fi = �
j

Fij . �15�

Since Fij =−F ji, the particle-particle interactions conserve
momentum. The exact form of the particle-particle interac-
tions is not critical to the success of the simulations, but the
interactions should be repulsive at short distances and attrac-
tive at large distances. In addition, computational efficiency
requires a long-distance cutoff �at h in this case� to reduce
the number of particle-particle interactions that must be cal-
culated, and the particle-particle interactions should be “soft”
to allow reasonably long time steps to be used. For a given
fluid, the magnitude of this force depends only on the dis-
tance between particles. The force is repulsive for distances
less than h /3, attractive for distances between h /3 and h and
zero for distances larger than h. Apart from the effects of
small density and configurational fluctuations in the interior
of the fluids, the total particle-particle interaction force act-
ing on the fluid particles is nonzero only near fluid surfaces,
fluid-fluid interfaces, and fluid-solid interfaces �at the walls
of the fracture�. In the boundary region, this force acts in the
direction of the density gradient, creating surface tension.
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Another advantage of using particle-particle interactions
is the ability to model a variety of wetting behaviors at the
solid boundaries. This can be achieved by placing stationary
particles �denoted by subscript b� in the vicinity of the
boundaries and assigning different interaction strengths swb
and snb to the interactions between the nonwetting, n, and
wetting, w, fluid particles and the boundary �fracture wall�
particles. The strength of the wetting is determined by the
strength of the fluid-boundary particle interactions relative to
the strength of the fluid-fluid interactions. The short-range
repulsive part of Fij, for the fluid-boundary interparticle in-
teractions, also simulates no-flow boundary conditions in a
manner similar to that employed by Monaghan �15�, who
used the repulsive part of a Lennard-Jones interaction be-
tween the boundary and fluid particles. The boundary par-
ticles are fixed in a narrow zone surrounding the nominal
solid surface. Occasionally fluid particles will overcome the
repulsive interactions with the boundary particles, and these
particles are prevented from penetrating the fracture walls by
using bounce-back boundary conditions at the nominal solid
surface.

At each time step, the densities at each of the particles are
calculated using Eq. �7�, the pressure at each particle is ob-
tained from the equation of state �12�, and the acceleration of
each fluid particle, ai=dvi /dt, was calculated from Eq. �13�.
The new particle position was calculated using the “velocity
Verlet” algorithm �22�, which takes the form

ri�t + �t� = ri�t� + �tvi�t� + 0.5�t2ai�t� �16�

and

vi�t + �t� = vi�t� + 0.5�t�ai�t� + ai�t + �t� . �17�

To obtain a stable solution the time step �t should satisfy
the conditions �t�0.25h /3c, �t�0.25min�h /3
ai
�1/2, and
�t�min��ih

2 /9	i�, where 
ai
 is the magnitude of the accel-
eration ai �9�.

A linked-list approach with an underlying square lattice
�with the size of the lattice unit equal to the range of the
weighting function, h, for computational efficiency� was
used to rapidly locate all of the particles within a range h of
any selected particle.

The dimensionless values of the constants used in the van
der Waals equation of state were kT=0.1, c̄1=0.022, and c̄2
=0.013, and the dimensionless masses of the particles were
set to unity.

III. SURFACE TENSION AND CONTACT ANGLES

In the modified SPH model, the surface tension and con-
tact angles are not prescribed explicitly. Instead, they are
determined by the interaction forces and the equation of
state, and they must be determined from numerical experi-
ments. To calculate the surface tension and verify the consis-
tency of our model, four different numerical experiments
were conducted: �i� small-amplitude shape fluctuations of a
liquid drop, �ii� measurement of the pressure in the SPH
liquid as a function of drop radius, �iii� capillary rise of fluid
in a small aperture, and �iv� gravity-driven flow of droplets
between two parallel walls.

In the first numerical experiment, the small-amplitude
fluctuations of two-dimensional liquid drop were studied.
The surface tension � can be found from the period of oscil-
lations, �, using the expression

� = 2��R3�

6�
, �18�

given by Nugent and Posch �20�, where R is the equilibrium
radius of the drop and � is the density of the fluid in the drop.
A two-dimensional drop was prepared by placing particles
randomly inside a circle with a radius of 5 in units of h �the
range of the weighting function�, and the system was given
time to reach equilibrium by running the SPH simulation
with g=0. In the absence of gravity, the shape of the drop
relaxes to a circle under the influence of the surface tension.
At equilibrium, the radius of the drop, R, was found to be
4.84 in units of h, and the average density ��� was 59.1. After
the system reached equilibrium, the drop was deformed into
an elliptic shape with an eccentricity of e=0.55 employing
an area-preserving and, hence, density-conserving transfor-
mation of the particle coordinates �20�:

	xi�

yi�
� =� 2

sin 
ri	sin�/2�sin ui

cos�/2�cos ui
� , �19�

where r=�xi
2+yi

2, ui=arctan�xi /yi�, and =e�.
After deformation into an ellipse, the drop underwent os-

cillations. Figure 1 shows how the radii of the ellipse in the
x and y directions change with time. The figure shows that
the oscillation decays with a period of �=510. Despite the
zero dynamic viscosity in Eq. �11� used in this numerical
experiment, the amplitude of the oscillations decreased due
to the intrinsic viscosity that is inherent in particle systems
�13,23�. From Eq. �18�, the value of the surface tension was
determined to be �=0.17.

The surface tension can be determined from the equilib-
rium radius of a liquid drop and the pressure in its interior,
P0, using the Young-Laplace equation �20�:

P0 =
�

R
. �20�

FIG. 1. Oscillations of a liquid drop initially deformed into an
ellipse. Change of radii �in units of h� of the ellipse in the x and y
directions with dimensionless time.
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Several liquid drops with radii ranging from 4 to 15 in
units of h were created as described above. Figure 2 shows a
plot of P0 versus 1/R, and a surface tension of approxi-
mately �=0.2 was obtained. Values of the surface tension
obtained from drops of different sizes were quite consistent.
The surface tensions of the smallest drops, with radii smaller
than 5 �in units of h� were slightly smaller than 0.2. The
Young-Laplace equation cannot be expected to hold when
the drop is very small, and the surface width becomes com-
parable with the drop radius. In addition, the uncertainties in
the estimated drop radius become larger relative to the radius
when the radius is not much larger than the particle size and
width of the surface.

Because of the particle-particle interactions Fij, the pres-
sure inside the droplet cannot be obtained directly from the
equation of state. However, Hoover �24� has shown that SPH
is isomorphic with molecular dynamics with many-body
particle-particle interactions. This allows the SPH equations
and the particle-particle interactions to be treated in a con-
sistent manner so that the pressure can be calculated from the
total particle-particle interaction forces �22�:

P = Pk +
1

4�r2�
i

�
j

rij · fij , �21�

where Pk is the ideal gas �kinetic� contribution to the pres-
sure and r is the “virial” radius of a circle in the middle of

liquid drop. The viscous forces are not compensated by ran-
dom forces �as they would be in dissipative particle dynam-
ics or Brownian dynamics simulations�, and the essentially
random relative motion of the particles generated by the non-
equilibrium initial positions of the particles is quickly
damped, leading to an effective kinetic temperature T that
approaches zero as the drop approaches its equilibrium shape
and surface energy is no longer being converted into kinetic
energy. In the case of a drop at equilibrium, the particles are
not moving. Consequently the ideal gas pressure Pk is zero.
For the same reason, the viscous forces are zero and the
interactions forces reduce to

fij = − mimj	Pj

� j
2 +

Pi

�i
2��iW�ri − r j,h� + Fij . �22�

The summation in Eq. �21� is over all i particles that lie
inside the virial radius r and all j particles in the drop, and
self-interactions �i= j� are excluded.

Figure 3 shows how the value of the pressure P0 depends
on the virial radius r for different droplet sizes. It can be seen
that expression �21� gives consistent values for the pressure
as long as r is less than approximately R−1, which suggest
that the width of the surface is on the order of h. In Fig. 2 we
used values of P0 averaged over r�R−1.

In the third experiment, the capillary rise between two flat
parallel walls �Fig. 4� that were inserted into a fluid layer

FIG. 2. �Color online� Dimen-
sionless fluid pressure in the cen-
ter of the liquid drop versus 1/R
where R is a radius of the liquid
droplet �in units of h�.

FIG. 3. �Color online� Dimen-
sionless fluid pressure in center of
the liquid drop versus virial radius
r �in units of h� as a function of
the radius of the liquid drop R �in
units of h�.
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supported by an impermeable lower boundary was simu-
lated. To start the simulation, particles were placed randomly
into a 32�32 box �in units of h� with periodic boundary
conditions, and the evolution of the particles was simulated
using Eq. �13�. After the system reached equilibrium, the
particles near the bottom of the model were “frozen” to form
an impermeable lower boundary. The particles in two verti-
cal layers near the middle were also frozen, as shown in the
figure, to represent the walls. Then the remaining “mobile”
particles above y=16 were removed, and the flow simulation
was started by applying a dimensionless gravitational accel-
eration of g=0.0001. Figure 4 shows the equilibrium state of
the system. The radii of curvatures of the fluid surfaces be-
tween the vertical walls were determined to be R1=4.05 and
R2=13.92, the difference in fluid levels h1−h2 was deter-
mined to be 5.27, and the surface tension �=0.178� was cal-
culated using the expression

�g�h1 − h2� = �	 1

R1
−

1

R2
� . �23�

In the fourth test, the movement of a droplet between two
parallel plates was studied �Fig. 5�. To start the simulation,
particles were placed randomly into a 32�32 box. After the
system reached equilibrium, all the particles were removed,
except for the particles representing the walls of the fracture
�the black particles in Fig. 5, with x coordinates in the ranges
12�x�13 and 19�x�20� and the particles representing
the droplet �particles with coordinates in the range 13�x
�19 and 14�y�31�. The interaction strength between the
fluid and boundary particles was set to 1.1 times the fluid-
fluid particle interactions. Then the simulation was run with
zero gravity to allow the fluid drop to reach an equilibrium
shape. Gravity was then applied in the negative y direction.
After a steady-state flow was reached, the average velocity v

of the particles in the droplet, the radii of curvature of the
receding and advancing interfaces Rr and Ra, and length of
the droplet, L, in the y direction, were measured. The surface
tension � was then calculated from

v =
b2

12	
��g +

�

L
	 1

Ra
−

1

Rr
�� . �24�

Two simulations were run with gravitational accelerations of
g1=0.0001 and g2=0.0002. The corresponding velocities
were v1=0.02 and v2=0.043, and the receding and advancing
radii of curvature were Rr1=2.59 and Rr2=2.27 for g
=0.0001 and Ra1=5.37 and Ra2=12.84 for g=0.0002. The
droplet length was L=14.1, the particle density was �=58.8
in both simulations, and the prescribed dynamic viscosity
was 	=0.5. It follows from the first experiment that the in-
trinsic viscosity is significant in nonlaminar flows. On the
other hand, SPH simulations of Couette flow, Poiseuille �9�
flow, and flow in porous media �10� show that the effects of
the intrinsic contribution to the viscosity are very small for
laminar flows. The surface tensions estimated from these
simulations using Eq. �24� with a dynamic viscosity of 	
=0.5 �assuming a zero intrinsic contribution to the viscosity�
were �1=0.179 and �2=0.180.

The last two simulations show that the advancing contact
angle increases �the radius of curvature increases� and the
receding angle decreases with increasing fluid velocity. This
behavior is well known �25–27�. Theoretical models for the
dynamics of driven interfaces in random systems �28–31�,
three-phase contact line dynamics �32–35�, computer simu-
lations �36–38� and experimental investigations �1,39,40�
suggest that �−�+� 
V
� for an advancing contact line and
�−−�� 
V
� for a receding contact line, where V is the con-
tact line velocity, �+ is the advancing contact angle, and �− is
the receding contact angle.

FIG. 4. Capillary rise between two parallel plates inserted into a
fluid layer supported by an impermeable boundary. The flow do-
main is periodic in the horizontal direction. Black and gray particles
denote the impermeable solid boundaries and the fluid. Size of flow
domain is in units of h.

FIG. 5. Steady-state motion of a droplet between two parallel
plates. Black and gray particles define the impermeable solid
boundaries and fluid. Size of flow domain is in units of h.
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The values of the surfaces tension obtained from all four
numerical experiments were in very good agreement. The
consistency between the four independent numerical tests
shows that the model used in this investigation can accu-
rately simulate surface tension and fluid-solid interactions
under both static and dynamic conditions.

IV. FLOW THROUGH FRACTURE JUNCTIONS

Next, flow through an inverted Y-shaped fracture junc-
tions was simulated �Figs. 6–8�. The initial setup for the
simulation was similar to those used in the simulations de-
scribed above. First, particles were randomly placed in a
64�64 box. After the system reached equilibrium, all of the
particles were removed, except for particles representing the
inverted Y-shaped walls of the fracture junction �the black
particles on Figs. 6–8� and the gray particles representing the
initial distribution of fluid �particles with coordinates 29
�x�35 and 43�y�61�. The positions of the boundary par-
ticles used to represent the fracture walls were kept fixed
during the rest of the simulation, and the interaction strength

between fluid and boundary particles was set to 1.1 times the
fluid-fluid particle interaction strength. Then the simulation
was run with zero gravity to allow the fluid to reequilibrate.
After the fluid had equilibrated and the curvatures of the
fluid surfaces had reached their asymptotic �long time� val-
ues, gravity was applied in the negative y direction. Depend-
ing on the magnitude of the gravitational acceleration, or
Bond number �Bo� three different types of behavior were
observed at the intersection. The Bond number for our simu-
lations can be defined as

Bo = �gL1L2/� , �25�

where �=59, the width of the fracture is L1=6, the length of
the droplet is L2=15, and the average value of the surface
tension from the four tests described above was �=0.181.

For g=0.0001 �Bo=2.92� �Fig. 6� the droplet stopped at
the intersection, and flow continued in the form of films on
the outer walls of the fractures.

When the gravitational force was increased to g
=0.000 11 �the Bond number was increased to 3.21� �Fig. 7�,
film flow still occurred but the droplet was able to overcome

FIG. 6. Droplet flow through a Y-shaped fracture junction at three different times with a gravitational acceleration of g=0.0001. Black
and gray particles denote the impermeable solid boundaries and the fluid. Size of flow domain is in units of h.

FIG. 7. Droplet flow through a Y-shaped fracture junction at three different times with a gravitational acceleration of g=0.00011. Black
and gray particles define the impermeable solid boundaries and the fluid. Size of flow domain is in units of h.
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the capillary barrier and enter the intersection. A further in-
crease in the gravitational acceleration to g=0.000 15 �Bo
=4.38� allowed the fluid to overcome the capillary barrier
relatively rapidly and fill the intersection without film devel-
opment, as Fig. 8 illustrates. Figure 9 shows sketches of the
experimental results taken from Dragila and Weisbrod �1�. In
their experiments, Dragila and Weisbrod used droplets of dif-
ferent sizes to change the effect of gravity acting on the fluid,
while in our simulations the acceleration due to gravity was
changed to achieve a similar effect in terms of Bond num-
bers. Dragila and Weisbrod �1� found that for small Bond
numbers Bo�2.059 �droplets shorter than 1 cm�, the droplet
stops at the intersection and flow continues in the form of
film flow. For intermediate Bond numbers 2.059�Bo
�3.089 �droplets between 1 cm and 1.5 cm�, the droplets
slow down and film flow occurs, but the intersection is even-
tually saturated. Finally, for large Bond numbers 3.089
�Bo �droplets large than 1.5 cm�, droplets saturate the inter-
section and film flow does not occur. Dragila and Weisbrod
�1� did not report the Bond numbers in their experiments, so
we estimated the Bond numbers assuming that the density of
water, �, is 998.2 kg/m3 and the water-air surface tension �
is 0.076 N/m. Figures 6–8 show that the simulations cap-
tured all the essential elements of the experimental results
shown in Fig. 9, such as the formation of capillary bridges
accompanied by film flow for small Bond numbers �Fig. 6�
and the flow of droplets that overcome the capillary barrier,
with preceding film flow for intermediate Bond numbers
�Fig. 7� and without film flow for large Bond numbers �Fig.
8�. We attribute the small quantitative inconsistency in drop-
let behavior as a function of Bond number between the ex-
periments and numerical simulation to several factors includ-
ing uncertainties in the contact angle and wetting behavior in
both the simulations and experiments, three-dimensional ef-
fects in the experiments that are not captured in the two-
dimensional simulations, insufficient numerical resolution in
the simulations, and experimental uncertainties such as un-
certainties in estimating the droplet heights �Dragila and
Weisbrod gave only approximate drop heights �1.0 and
1.5 cm� at the transitions between different behaviors�. The
behavior of the thin films in the experiments depends on

physical processes occurring over a very wide range of
length scales �from molecular or near-molecular scales near
the three-phase contact lines and the fluid-solid interfaces to
hydrodynamics on the macroscopic scale of the film thick-
ness�. In contrast to this, the thickness of the film in the SPH
simulations is smaller than the range of the weighting func-
tion. The SPH simulations could be improved by increasing
the resolution of the simulations. However, this would re-
quire a large increase in computer resources, and the full
range of length scales that are important in film flow would
still be far out of reach. One possible solution would be to
use adaptive particle splitting and coalescence methods that
would allow smaller particles to be used near the solid
boundaries and larger particles to to be used to simulate bulk
fluid flow. An alternative would be to use hybrid models
combining molecular dynamics or dissipative particle dy-
namics to simulate molecular-scale and -mesoscale processes
with SPH to simulate larger-scale hydrodynamic processes.

FIG. 8. Droplet flow through a Y-shaped fracture junction at three different times with a gravitational acceleration of g=0.00015. Black
and gray particles define the impermeable solid boundaries and the fluid. Size of flow domain is in units of h.

FIG. 9. Spatial distribution of water in a Y-shaped fracture junc-
tion. The solid regions are fluid filled. Time progresses from left to
right. �a� Droplets shorter than 1.0 cm. �b� Droplets between 1.0
and 1.5 cm. �c� Droplets longer than 1.5 cm �after Dragila and
Weisbrod �1�, published with permission of the authors�.
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V. DISCUSSION AND CONCLUSIONS

A combination of standard SPH equations with particle-
particle interactions was used to simulate partially saturated
fluid flow in fracture junctions. The consistency of the sur-
face tension values obtained from four independent numeri-
cal tests demonstrated that the modified SPH model could
accurately represent the effects of surface tension and fluid-
solid interactions. The results of numerical simulations of
flow through fracture intersections were in qualitative agree-
ment with laboratory experiments. Although the simulations
lead to film flow that resembles that seen in the experiments,
the implications of this apparent agreement should be treated
cautiously due to the limited resolution of the numerical
simulations.

We attribute the realistic contact-line dynamics to the in-
teractions between the fluid particle and the randomly dis-
tributed boundary particles representing the fracture walls.

The motion of the contact line is controlled by the interplay
between the random pinning forces created by these interac-
tions and the driving force resulting from the effects of grav-
ity acting on the fluid phase. These are the key ingredients of
some of the models that have been proposed for contact line
dynamics �28–31�. However, the dynamics of the contact
points in two-dimensional simulations cannot be expected to
be quantitatively similar to the behavior of the contact line in
three-dimensional systems.
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